The Hodge-Laplacian
Boundary Value Problems on Riemannian ManifoldsThe core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calder’n-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincar’, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents: Preface Introduction and Statement of Main Results Geometric Concepts and Tools Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism Additional Results and Applications Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis Bibliography Index ISBN: 9783110482669, 3110482665
The Hodge-Laplacian 1st Edition Boundary Value Problems on Riemannian Manifolds Ebook (hebook.shop)
$25.00
Dorina Mitrea; Irina Mitrea; Marius Mitrea; Michael Taylor
Category: 2016
Tag: hebook.shop